Getting Started
with

Docker

npNOG 10

November 25 - 28, 2024

s material is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)

http://creativecommons.org/licenses/by-nc/4.0/

About Docker

e Docker debuted to the public in Santa Clara at
PyConin 2013.
e Written in Go Language.

e Products maintained by Docker, Inc.
o Docker Engine

o Docker Engine Enterprise
o Docker Hub
o Docker Desktop

e Original Author: Solomon Hykes
e |t was released as open-source.

npNOG10

What is Docker?

Docker is a containerization platform that allows you to package,
ship, and run applications in containers. Containers are
lightweight and portable, and they provide a consistent and
reliable way to deploy applications across different
environments.

e |nstalling Docker = Installing Docker Engine + Docker CLI

e Docker Engine is a daemon wihch manages containers, the
same way that a hypervisor manages VMs.

e Docker Engine is the core of Docker, and it is responsible for
managing containers and images.

e Docker CLI is used to interact with the Docker Engine.

e Docker CLI and Docker Engine communicate through an API.

e However, there are many other programs, and client libraries,

to use the API.
npNOG10

Docker Architecture

e Docker uses a client-server architecture.

e Docker client talks to the Docker daemon.

e Docker daemon does the heavy lifting of building, running,
and distributing your Docker containers.

e The Docker client and daemon can run on the same
system, or you can connect a Docker client to a remote
Docker daemon.

e The Docker client and daemon communicate using a REST
API, over UNIX sockets or a network interface. Another
Docker client is Docker Compose, that lets you work with
applications consisting of a set of containers.

npNOG10

Docker Architecture (diagram)

|Client l]Docker Host I Registry

P j rﬁ ’lmages [|Containers | Images

docker run 1 - > —_——
ﬁ w NGINX
L

T

& red

idocl-ter build f.eeeemreefeereremaaeees w S A ennn > @

- ~ O |

G) Docker '

daemon

docker pull [~--"71 """~ e e e e L e P L LR EE LT EEEEEE LTS EEEEE —_—

.)
- =
o 8BS

npNOG10

The Docker daemon

e The Docker daemon is the background service that
manages building, running, and distributing Docker

containers.
e The Docker daemon runs on the host machine and

manages Docker objects such as images, containers,

networks, and volumes.

e The Docker daemon is responsible for starting and
stopping containers, managing images, and
networking.

e The Docker daemon (dockerd) listens for Docker

APl requests.

npNOG10

The Docker client

e The Docker client is the command line interface to
the Docker daemon.

e The Docker client (docker) is the primary way that
many Docker users interact with Docker.

e When you type a docker command, the client sends
the command to a Docker daemon (dockerd) to act
upon.

e The docker command uses the Docker API.

e The Docker client can communicate with more than
one daemon.

npNOG10

Docker Desktop

e Docker Desktop is an easy-to-install application for
your Mac, Windows or Linux

e |t enables you to build and share containerized
applications and microservices.

e Itincludes the Docker daemon (dockerd), the
Docker client (docker), Docker Compose, Docker
Content Trust, Kubernetes, and Credential Helper.

e |tis a graphical user interface (GUI) for Docker.

e |t provides a simple and easy-to-use interface for
managing Docker containers and images.

e |tis agreattool for developers who want to get

started with Docker quickly and easily.
npNOG10

Docker Registries

e Docker Registries are repositories for Docker
images.

e They are used to store and distribute Docker
images.

e Docker Registries can be public or private.

e Public Registries are open to the public and anyone
can access them.

e Docker Hub is a public registry that anyone can use,
and Docker looks for images on Docker Hub by
default.

e You can even run your own private registry.

npNOG10

Docker Objects

e Docker objects are the building blocks of Docker.
® They are the things that Docker manages.
e There are four main types of Docker objects:

o Images
= Images are the blueprint for containers.

o Containers
= Containers are the running instances of images.

o Networks
= Networks are the way containers communicate with each other.

o Volumes
= Volumes are the way containers store data.

e Each of these objects has its own set of commands and options.
® You can use the docker command to manage these objects.
® You can also use the Docker API to manage these objects.

npNOG10

Docker Images

e Docker images are the blueprint for containers.
They are the files that are used to create containers.
Image = files + metadata

The files forms the root filesystem of the container.

The metadata describes the image.
o the author of the image

o the command to execute in the container when starting it

o environment variables to be set and etc
Images are made of layers, conceptually stacked on top of each

other.

Each layer can add, change and remove files and/or metadata.
o The layers are read-only.

o The top layer is the writable layer.
Images can share layers to optimize disk usage, transfer times, and

memory use.

Images are STATELESS and IMMUTABLE.

Images are built from a Dockerfile. A Dockerfile is a text file that
contains the instructions for building an image.

The process of building a new image is called: "COMMITING A

npNOGHIANGE".

npNOG10

