
Getting Started

with

Docker

npNOG 10

November 25 - 28, 2024

This material is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)

http://creativecommons.org/licenses/by-nc/4.0/


About Docker

Docker debuted to the public in Santa Clara at
PyCon in 2013.
Written in Go Language.
Products maintained by Docker, Inc.

Docker Engine

Docker Engine Enterprise
Docker Hub
Docker Desktop

Original Author: Solomon Hykes
It was released as open-source.

npNOG10



What is Docker?
Docker is a containerization platform that allows you to package,
ship, and run applications in containers. Containers are
lightweight and portable, and they provide a consistent and
reliable way to deploy applications across different
environments.

Installing Docker = Installing Docker Engine + Docker CLI
Docker Engine is a daemon wihch manages containers, the
same way that a hypervisor manages VMs.
Docker Engine is the core of Docker, and it is responsible for
managing containers and images.
Docker CLI is used to interact with the Docker Engine.
Docker CLI and Docker Engine communicate through an API.
However, there are many other programs, and client libraries,
to use the API.

npNOG10



Docker Architecture
Docker uses a client-server architecture.
Docker client talks to the Docker daemon.
Docker daemon does the heavy lifting of building, running,
and distributing your Docker containers.
The Docker client and daemon can run on the same
system, or you can connect a Docker client to a remote
Docker daemon.
The Docker client and daemon communicate using a REST
API, over UNIX sockets or a network interface. Another
Docker client is Docker Compose, that lets you work with
applications consisting of a set of containers.

npNOG10



Docker Architecture (diagram)

npNOG10



The Docker daemon

The Docker daemon is the background service that
manages building, running, and distributing Docker
containers.
The Docker daemon runs on the host machine and
manages Docker objects such as images, containers,
networks, and volumes.
The Docker daemon is responsible for starting and
stopping containers, managing images, and
networking.
The Docker daemon (dockerd) listens for Docker
API requests.

npNOG10



The Docker client

The Docker client is the command line interface to
the Docker daemon.
The Docker client (docker) is the primary way that
many Docker users interact with Docker.
When you type a docker command, the client sends
the command to a Docker daemon (dockerd) to act
upon.
The docker command uses the Docker API.
The Docker client can communicate with more than
one daemon.

npNOG10



Docker Desktop

Docker Desktop is an easy-to-install application for
your Mac, Windows or Linux
It enables you to build and share containerized
applications and microservices.
It includes the Docker daemon (dockerd), the
Docker client (docker), Docker Compose, Docker
Content Trust, Kubernetes, and Credential Helper.
It is a graphical user interface (GUI) for Docker.
It provides a simple and easy-to-use interface for
managing Docker containers and images.
It is a great tool for developers who want to get
started with Docker quickly and easily.

npNOG10



Docker Registries

Docker Registries are repositories for Docker
images.
They are used to store and distribute Docker
images.
Docker Registries can be public or private.
Public Registries are open to the public and anyone
can access them.
Docker Hub is a public registry that anyone can use,
and Docker looks for images on Docker Hub by
default.
You can even run your own private registry.

npNOG10



Docker Objects

Docker objects are the building blocks of Docker.

They are the things that Docker manages.

There are four main types of Docker objects:

Images
Images are the blueprint for containers.

Containers
Containers are the running instances of images.

Networks
Networks are the way containers communicate with each other.

Volumes
Volumes are the way containers store data.

Each of these objects has its own set of commands and options.

You can use the docker command to manage these objects.

You can also use the Docker API to manage these objects.

npNOG10



Docker Images
Docker images are the blueprint for containers.
They are the files that are used to create containers.

Image = files + metadata
The files forms the root filesystem of the container.
The metadata describes the image.

the author of the image
the command to execute in the container when starting it
environment variables to be set and etc

Images are made of layers, conceptually stacked on top of each
other.
Each layer can add, change and remove files and/or metadata.

The layers are read-only.

The top layer is the writable layer.
Images can share layers to optimize disk usage, transfer times, and
memory use.
Images are STATELESS and IMMUTABLE.
Images are built from a Dockerfile. A Dockerfile is a text file that
contains the instructions for building an image.
The process of building a new image is called: "COMMITING A
CHANGE".npNOG10



npNOG10


