
Docker Compose

npNOG 10

November 25 - 28, 2024

This material is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)

http://creativecommons.org/licenses/by-nc/4.0/

Docker Compose
Docker Compose is a tool for defining and running multi-
container applications.

It is the key to unlocking a streamlined and efficient development

and deployment experience.
Compose simplifies the control of your entire application stack

making it easy to manage services
networks
volumes
in a single, comprehensible YAML configuration file

Then, with a single command, you create and start all the services
from your configuration file.
Compose works in all environments

production, staging, development, testing, as well as CI workflows.

It also has commands for managing the whole lifecycle of your

application:
Start, stop, and rebuild services
View the status of running services
Stream the log output of running services
Run a one-off command on a service

npNOG10

Why use Compose?
Using Docker Compose offers several benefits that
streamline the development, deployment, and management
of containerized applications:

Simplified control

Docker Compose allows you to define and manage multi-container
applications in a single YAML file.
This simplifies the complex task of orchestrating and coordinating
various services, making it easier to manage and replicate your
application environment.

Efficient collaboration

Docker Compose configuration files are easy to share, facilitating
collaboration among developers, operations teams, and other
stakeholders.

This collaborative approach leads to smoother workflows, faster
issue resolution, and increased overall efficiency.

npNOG10

Why use Compose? (contd.)
Rapid application development

Compose caches the configuration used to create a container.
When you restart a service that has not changed, Compose re-uses
the existing containers.
Re-using containers means that you can make changes to your

environment very quickly.

Portability across environments
Compose supports variables in the Compose file.
You can use these variables to customize your composition for
different environments, or different users.

Extensive community and support
Docker Compose benefits from a vibrant and active community,
which means abundant resources, tutorials, and support.

This community-driven ecosystem contributes to the continuous
improvement of Docker Compose and helps users troubleshoot
issues effectively.

npNOG10

How Compose works?
With Docker Compose you use a YAML configuration file,
known as the Compose file, to configure your application’s
services, and then you create and start all the services from
your configuration with the Compose CLI.

Compose works by creating a YAML file that defines the
services, networks, and volumes for your application.

npNOG10

Docker Compose file (Sample)

version: '3.8'

services:
 web:
 image: nginx:latest
 ports:
 - "80:80"
 volumes:
 - ./web:/usr/share/nginx/html
 depends_on:
 - redis

 redis:
 image: redis:latest
 ports:
 - "6379:6379"

npNOG10

The Compose file
The default path for a Compose file is compose.yaml (preferred)
or compose.yml that is placed in the working directory. Compose
also supports docker-compose.yaml and docker-compose.yml for
backwards compatibility of earlier versions. If both files exist,
Compose prefers the canonical compose.yaml .

Here is a breakdown of the Compose file:

version : The version of the Compose file format.
services : A list of services that make up your application.
networks : A list of networks that your services use.
volumes : A list of named volumes that your services use.

depends_on : A list of services that your services depend on.
environment : A list of environment variables that your services use.
ports : A list of ports that your services use.
expose : A list of ports that your services expose.
restart : A restart policy that your services should use.npNOG10

CLI
The Docker CLI lets you interact with your Docker Compose
applications through the docker compose command, and its
subcommands. Using the CLI, you can manage the lifecycle of
your multi-container applications defined in the
compose.yaml file. The CLI commands enable you to start,

stop, and configure your applications effortlessly.

npNOG10

Key commands

To start all the services defined in your compose.yaml file:

docker compose up

To stop and remove the running services:

docker compose down

If you want to monitor the output of your running
containers and debug issues, you can view the logs with:

docker compose logs

To lists all the services along with their current status:

docker compose ps

npNOG10

npNOG10

