
Docker Networking

npNOG 10

November 25 - 28, 2024

This material is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)

http://creativecommons.org/licenses/by-nc/4.0/

Docker Networking

Docker networking is an essential aspect of using
Docker containers, as it allows containers to
communicate with each other, with the host
system, and with external networks.

Docker provides several networking options to
facilitate these communications.

npNOG10

Docker Networking Drivers

Docker networking drivers are the underlying
technologies that enable communication between
containers and the host system. Docker includes
several network drivers, each serving different
purposes:

Bridge Network (default)
Host Network
Overlay Network

Macvlan Network
Ipvlan Network
None Network

npNOG10

Bridge Network (default):

The default network driver for containers.
Creates an isolated network on a single Docker
host.
Containers on the same bridge network can
communicate with each other.
Example command:
docker network create --driver bridge
my_bridge_network

npNOG10

Host Network:

Shares the host’s networking namespace.
Containers use the host's IP address.
Useful for performance optimization or running
services that need direct network access.
Example command:
docker run --network host my_container

npNOG10

Overlay Network:

Used for multi-host communication, useful in
Docker Swarm or Kubernetes.
Enables containers running on different Docker
hosts to communicate.
Example command:
docker network create --driver overlay
my_overlay_network

npNOG10

Macvlan Network:

Assigns a MAC address to each container to make
them look like physical devices.
Useful for legacy applications that require direct
network access.
Example command:
docker network create --driver macvlan --
subnet=192.168.1.0/24 --gateway=192.168.1.1 -o
parent=eth0 my_macvlan_network

npNOG10

Ipvlan Network:

IPVLAN is similar to MACVLAN, but instead of
assigning each container a unique MAC address, it
assigns a unique IP address while sharing the MAC
address of the parent interface.
Useful for performance optimization or running
services that need direct network access.
Example command:
docker network create --driver ipvlan --
subnet=192.168.1.0/24 --gateway=192.168.1.1 -o
parent=eth0 my_ipvlan_network

npNOG10

None Network:

No network is attached to the container.
Useful for highly isolated containers where
networking is not required.
Example command:
docker run --network none my_container

npNOG10

Networking Commands

List Networks:
docker network ls

Lists all networks available on the Docker host.

Inspect Network:
docker network inspect [network_name]

Provides detailed information about a specific network.

Connect Container to Network:
docker network connect [network_name] [container_name]

Connects an existing container to a specific network.

Disconnect Container from Network:
docker network disconnect [network_name]
[container_name]

Disconnects a container from a specific network.

npNOG10

Networking Use Cases

Single-host Networking:
For applications running on a single Docker host, the bridge
network is usually sufficient.
Example: Running a web server and database on the same
host.

Multi-host Networking:
For applications distributed across multiple Docker hosts,

the overlay network is suitable.
Example: A microservices architecture deployed using
Docker Swarm or Kubernetes.

High-performance Networking:
For performance-sensitive applications, the host network
can reduce network latency.
Example: Network monitoring tools or real-time
applications.

npNOG10

Custom Docker Networks

Creating a Custom Network:
Example:
docker network create --driver bridge
my_custom_network

Running a Container on a Custom Network:
Example:
docker run --network my_custom_network my_container

DNS Resolution:
Docker provides internal DNS resolution, so
containers can resolve each other by name when using
user-defined networks.
Example: Container web can resolve the name db if

both are on the same user-defined network.

npNOG10

Practical Examples

Create a custom bridge network
docker network create --driver bridge my_bridge_network

Run a container on the custom bridge network
docker run -d --name my_container --network my_bridge_network nginx

List all networks
docker network ls

Inspect the custom bridge network
docker network inspect my_bridge_network

Connect an existing container to another network
docker network connect my_bridge_network my_container

Disconnect a container from a network
docker network disconnect my_bridge_network my_container

npNOG10

npNOG10

