
Docker Volumes

npNOG 10

November 25 - 28, 2024

This material is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)

http://creativecommons.org/licenses/by-nc/4.0/

Docker Volumes

Docker volumes are a crucial part of the Docker
ecosystem, providing a way to persist data generated by
and used by Docker containers. Volumes are managed by
Docker and can be used to share data between the host
system and the containers, as well as between multiple
containers.

npNOG10

Types of Docker Storage
Volumes:

Volumes are stored in a part of the host filesystem which is
managed by Docker (/var/lib/docker/volumes/ on Linux).
Volumes are the preferred mechanism for persisting data in Docker.

Bind Mounts:

Bind mounts can be used to mount a file or directory from the host
filesystem into a container.

The file or directory is referenced by its full or relative path on the
host machine.
This method provides more control over the exact mount point but
is less portable than volumes.

tmpfs Mounts:

A tmpfs mount is a temporary filesystem mount that is stored in

memory and not persisted on disk.
This is useful for cases where you need fast, ephemeral storage.

npNOG10

Creating and Using Docker Volumes
Create a Volume
To create a volume, you use the docker volume create command:

docker volume create my_volume

Inspect a Volume
You can inspect a volume to see details about it:

docker volume inspect my_volume

Using a Volume in a Container
You can use a volume in a container by specifying the -v or --mount

flag when you run the container:
Using -v (short syntax):

docker run -d -v my_volume:/path/in/container my_image

Using --mount (long syntax):

docker run -d --mount source=my_volume,target=/path/in/container my_image

npNOG10

Managing Docker Volumes

List Volumes
To list all the volumes on your system:

docker volume ls

Remove a Volume
To remove a volume that is not being used by any container:

docker volume rm my_volume

Remove All Unused Volumes
To remove all volumes that are not used by at least one
container:

docker volume prune

npNOG10

Examples and Use Cases

Persistent Storage:
Use volumes to persist data that should remain even if the
container is removed. For example, storing database data.

docker run -d --name my_db -v my_db_volume:/var/lib/mysql mysql

Sharing Data Between Containers:
Use volumes to share data between multiple containers. For
example, sharing configuration files.

docker run -d --name container1 -v shared_volume:/config busybox
docker run -d --name container2 -v shared_volume:/config busybox

npNOG10

Examples and Use Cases (contd.)

Backup and Restore:
Use volumes to easily backup and restore container data.
Backup:

docker run --rm -v my_volume:/data -v $(pwd):/backup busybox tar cvf /backup/backup.tar /data

Restore:

docker run --rm -v my_volume:/data -v $(pwd):/backup busybox tar xvf /backup/backup.tar -C /

npNOG10

Best Practices

Use Volumes for Persistent Data:
Volumes are designed to persist data, making them
the best choice for stateful applications like
databases.
Use Named Volumes:
Named volumes are easier to manage and
understand than anonymous volumes.
Avoid Using Host Paths:
Using host paths can lead to portability issues. Use
volumes instead.
Clean Up Unused Volumes:
Regularly prune unused volumes to free up space.

npNOG10

npNOG10

