
Introduction

to

Containerization

npNOG 10

November 25 - 28, 2024

This material is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/)

http://creativecommons.org/licenses/by-nc/4.0/

What is Containerization?
Containerization is a lightweight form of virtualization
that allows applications and their dependencies to be
packaged into isolated containers.
Unlike traditional virtualization, which relies on
hypervisors to create multiple virtual machines (VMs) on a
single physical server, containerization shares the host
operating system kernel and only isolates the application's
runtime environment.
Everything an application needs to run - its binaries,
libaries, configuration files and dependencies - is
encapsulated and isolated in its container.
These containers can run on any system with a container
runtime installed, making them highly portable and
efficient.

npNOG10

Evolution of Container Technology

The concept of containerization traces back to the
early 2000s with technologies like FreeBSD jails and
Solaris Zones. However, Docker revolutionized
containerization in 2013 by providing an easy-to-
use platform for creating, deploying, and managing
containers.

npNOG10

Why Containerization is Important

Containerization offers several benefits, including
improved consistency across environments, faster
application deployment, efficient resource
utilization, and simplified scaling.
Most important, containerization allows
applications to be “written once and run anywhere.”

npNOG10

What is container?

a lightweight OS-level virtualization method
sand-alone piece of executable software
NOT a virtual machine
process with isolation, shared resources and layered
filesystems

npNOG10

Container Terms
namespace: linux kernel feature that isolates and virtualizes
system resources for a collection of processes and their children

PID: gives process own view of subset of system processes
MNT: gives process mount table and allows process to have own filesystem
NET: gives process own network stack (container can have virtual ethernet pairs to
link to host or other containers)

UTS: gives process own view of system hostname and domain name
IPC: isolates inter-process communications (i.e. message queues)
USER: newest namespace that maps process UIDs to different set of UIDs on host
(can map containers root uid to unprivileged UID on host)

cgroups: control groups collect set of process tasks IDS together
and apply limits, such as for resource utilization

enforce fair/unfair resource sharing between processes

exposed by kernel as special file system to mount
add a process or thread by adding process IDs to task file and read/configure values
by editing subdirectory files

layered filesystems: optimal way to make a copy of root
filesystem for each container

one of the reasons why it is easy to move containers around
can "copy on write" (btrFS)
can use "union mounts" (aufs, OverlayFS) - way of combining multiple directories

npNOG10

How Containers work?
Each container is an executable packege of software,
running on top of a host OS. A host(s) may support many
containters (tens, hundreds or even thousands)
At the bottom, there is the hardware including its CPU,
disk storage and network interfaces.
Above that, there is the host OS and its kernel - the latter
servers as a bridge between the software of the OS and
the hardware of the underlying system
The container engine and its minimal guest OS, which are
particular to the containerization technology being used,
sit atop the host OS
At the very top are the binaries and libraries (bins/libs) for
each application and the apps themselves, runnning in
their isolated user spaces (containers)

npNOG10

Architecture

npNOG10

Tools used in Containerization

Docker
Linux Containers (LXC)
Kubernetes
AWS ECS
Azure Container Service

npNOG10

Docker

Docker, or Docker Engine, is the most
popular containerization platform. It
simplifies the process of building,

shipping, and running containers. For
example, you can use Docker to package
a web application and its dependencies into a container
image, which can then be deployed on any Docker-
enabled host.

npNOG10

Linux Containers (LXC)

Commonly known as LXC, these are the
original Linux container technology. LXC
is a linux operating system-level

virtualization method for running
multiple isolated Linux systems
(containers) on a single Linux host. It
uses Linux kernel features such as namespaces and
control groups (cgroups) to create isolated environments
for applications. LXC provides a user-friendly interface

for managing containers and is often used for
development, testing, and deployment of applications.

npNOG10

Kubernetes

Kubernetes is an open-source
container-orchestration system for
automating computer application

deployment, scaling, and management. It
was originally designed by Google and is
now maintained by the Cloud Native
Computing Foundation. It aims to provide a "platform for
automating deployment, sacling and operations of
application conteriners across cluster of hossts"

npNOG10

AWS ECS

Amazon Elastic Container Service
(Amazon ECS) is a highly scalable, fast
container management service that

makes it easy to run, stop and manage
containers on a cluster.

npNOG10

Azure Container Service

ACS is a cloud-based container
deployment and management sercie that
supports popular open-source tools and

technologies for container and
container orchestration.

npNOG10

Comparison with Virtualization
While both containerization and virtualization provide
isolation and resource management, containerization
offers several advantages over traditional
virtualization:

Efficiency: Containers are more lightweight than VMs since
they share the host OS kernel, resulting in faster startup
times and lower resource overhead.
Portability: Containers can run on any system with a
compatible container runtime, making them highly portable
across different environments.
Scalability: Containers can be rapidly instantiated and
scaled horizontally to meet fluctuating workload demands.

Consistency: Containers encapsulate the application and its
dependencies, ensuring consistency across development,
testing, and production environments.

npNOG10

Containers vs VMS

npNOG10

VMS vs Containers

VMS Containers

- hypervisors run software on
physial server to emulate a
particualr hardware system
(aka a virtual machine)

- run isolated process on
a single server or host
operating system (OS)

- VM runs a full copy of the
operating system (OS)

- can migrate only to
server with compatible
OS kernels

- can run multiple applications
- best for a single
application

npNOG10

Disadvantage of Containerization
Security: One can not ignore the security issues with the
container and associated containers. In reality, hackers can
penetrate its OS-level virtualization. Yes, they fo have this
flaw, but it is not that easy to breach containers' security.
While in the case of Virtual Machines, you have a hypervisor
that proviedes a petite point of the breach, which is more
secure than that of the container's surface.
Monitoring: Sometimes, there could be a chance that many
containers are working on the same server, which is a good
thing. But when you look at tahe maintenance side, you will
find it very hard to manage it all. This could lead to many
mishaps around the system.

npNOG10

Conclusion

Various containerization tools are available in the
market that could best suit our requirements. The
power of containers helps get the desired output,
irrespective of the OS at the client-side or other
dependencies.
In the lifecycle of software, there could be multiple
rolling updates necessary for creating the best
software. Now, you get to choose which
containtgers are the best fit and capable of updating
very easily and quickly on the go for you.

npNOG10

npNOG10

